miércoles, 4 de noviembre de 2015
Origen de los cometas
En algún momento se creyó que los cometas procedían del espacio interestelar. Aunque no se ha aceptado del todo ninguna teoría detallada de su origen, muchos astrónomos creen que los cometas se originaron en los primeros días del sistema solar en su parte exterior, más fría, a partir de la materia planetaria residual. El astrónomo danés Jan Hendrik Oort ha formulado que una "nube de reserva" de material cometario se ha acumulado más allá de la órbita de Plutón, y que los efectos gravitatorios de las estrellas fugaces pueden enviar parte de este material en dirección al Sol, momento en el que se haría visible en forma de cometas.
Composición de los cometas
Las estructuras de los cometas son diversas y muy dinámicas, pero todos ellos desarrollan una nube de material difuso que los rodea, denominada cabellera, que generalmente crece en tamaño y brillo a medida que el cometa se aproxima al Sol. Generalmente es visible un pequeño núcleo brillante (menos de 10 kilómetros de diámetro) en el centro de la cabellera. La cabellera y el núcleo juntos constituyen la cabeza del cometa. La cabeza, incluida su difusa cabellera, puede ser mayor que el planeta Júpiter. Sin embargo, la parte sólida de la mayoría de los cometas tiene un volumen de algunos kilómetros cúbicos solamente. Por ejemplo, el núcleo oscurecido por el polvo del cometa Halley tiene un tamaño aproximado de 15 por 4 kilómetros.
A medida que los cometas se aproximan al Sol, la alta temperatura solar provoca la sublimación de los hielos, desarrollando colas enormes de material luminoso que se extienden por millones de kilómetros desde la cabeza, alejándose del Sol. La cola también se vuelve brillante en las proximidades del Sol y puede extenderse decenas o centenares de millones de kilómetros en el espacio. La cola siempre se extiende en sentido opuesto al Sol, incluso cuando el cometa se aleja del astro central. Las grandes colas de los cometas están compuestas de simples moléculas ionizadas, incluyendo el monóxido de carbono y el dióxido de carbono. Las moléculas son expulsadas del cometa por la acción del viento solar, una corriente de gases calientes arrojada continuamente desde la corona solar (la atmósfera externa del Sol), a una velocidad de 400 km/s. Con frecuencia, los cometas también presentan una cola arqueada, más pequeña, compuesta de polvo fino expulsado de la cabellera por la presión de la radiación solar
Cuando están lejos del Sol, el núcleo está muy frío y su material está congelado. El astrónomo estadounidense Fred L. Whipple describió en 1949 el núcleo de los cometas, que contiene casi toda la masa del cometa, como una "bola de nieve sucia" compuesta por una mezcla de hielo y polvo. También, en este estado, reciben el nombre de "iceberg sucio". Cuando un cometa se aproxima al Sol, a pocas UA (unidades astronómicas) del Sol, la superficie del núcleo empieza a calentarse y los volátiles se evaporan. Las moléculas evaporadas se desprenden y arrastran con ellas pequeñas partículas sólidas formando la cabellera del cometa, de gas y polvo.luminoso que se extienden por millones de kilómetros desde la cabeza, alejándose del Sol. La cola también se vuelve brillante en las proximidades del Sol y puede extenderse decenas o centenares de millones de kilómetros en el espacio. La cola siempre se extiende en sentido opuesto al Sol, incluso cuando el cometa se aleja del astro central. Las grandes colas de los cometas están compuestas de simples moléculas ionizadas, incluyendo el monóxido de carbono y el dióxido de carbono. Las moléculas son expulsadas del cometa por la acción del viento solar, una corriente de gases calientes arrojada continuamente desde la corona solar (la atmósfera externa del Sol), a una velocidad de 400 km/s. Con frecuencia, los cometas también presentan una cola arqueada, más pequeña, compuesta de polvo fino expulsado de la cabellera por la presión de la radiación solar.
Los cometas
Los cometas son cuerpos celestes de formas irregulares, frágiles y pequeños, compuestos por una mezcla de granos no volátiles y gases congelados (tienen un aspecto nebuloso). Tienen órbitas muy elípticas que los lleva muy cerca del Sol y los devuelve al espacio profundo, frecuentemente más allá de la órbita de Plutón. Se caracterizan por una cola larga y luminosa, aunque esto sólo se produce cuando el cometa se encuentra en las cercanías del Sol.
Asteroides centauros
Asteroides binarios
Son un sistema de dos asteroides girando entre sí en un punto gravitacional común que se encuentra a una distancia determinada entre ambos asteroides que se denomina "Centro de masas".
Los asteroides binarios han sido descubiertos por la sonda espacial Galileo cuando observaba el meteorito Ida Cuando los asteroides son de similares masas suelen denominarse como "compañeras binarias", "asteroides dobles" o "Asteroides binarios"
Se sospecha que los lagos Lagos Clearwater en Canada se han formado debido a la caída de dos asteroides binarios.
Las teorías sobre su posible formación son varias, pero se ha logrado establecer que la mayoría de los asteroides binarios son muy porosos y de poca masa. Tal vez se han formado por el impacto en forma tangencial de un cuerpo mayor sobre dos asteroides o por el impacto y posterior separación de un asteroide en dos cuerpos menores, otras teorías más recientes relacionan al viento solar y la interacción del planeta tierra en estos cuerpos.
Los asteroides binarios han sido descubiertos por la sonda espacial Galileo cuando observaba el meteorito Ida Cuando los asteroides son de similares masas suelen denominarse como "compañeras binarias", "asteroides dobles" o "Asteroides binarios"
Se sospecha que los lagos Lagos Clearwater en Canada se han formado debido a la caída de dos asteroides binarios.
Las teorías sobre su posible formación son varias, pero se ha logrado establecer que la mayoría de los asteroides binarios son muy porosos y de poca masa. Tal vez se han formado por el impacto en forma tangencial de un cuerpo mayor sobre dos asteroides o por el impacto y posterior separación de un asteroide en dos cuerpos menores, otras teorías más recientes relacionan al viento solar y la interacción del planeta tierra en estos cuerpos.
Asteroides Troyanos
Son pequeños cuerpos celestes que comparten la órbita de un planeta. Están situados en dos nubes, una que gira 60° delante del planeta en el plano de su órbita, y la otra 60° detrás.
En el año 2010 se descubrió que la tierra tiene un asteroide Troyano (es decir gira con nosotros en un órbita de casi 365 días), el nombre provisional es 2010 TK7 y ha sido descubierto en octubre del año 2010 por el telescopio espacial WISE, hay otro asteroide que si bien no es troyano comparte parcialmente la órbita de La Tierra cruzándola, se llama Cruithne y ha sido descubierto en el año 1986.
En el año 2010 se descubrió que la tierra tiene un asteroide Troyano (es decir gira con nosotros en un órbita de casi 365 días), el nombre provisional es 2010 TK7 y ha sido descubierto en octubre del año 2010 por el telescopio espacial WISE, hay otro asteroide que si bien no es troyano comparte parcialmente la órbita de La Tierra cruzándola, se llama Cruithne y ha sido descubierto en el año 1986.
Características de los asteroides
Los asteroides de mayor tamaño y más representativos son: Ceres (La NASA lo denomina en forma doble, por un lado el asteroide más grande y por el otro el planeta enano más pequeño), con un diámetro de unos 1.030 kilómetros, y Palas y Vesta, con diámetros de unos 450 kilómetros. Aproximadamente 200 asteroides tienen diámetros de más de 100 kilómetros, y existen miles de asteroides más pequeños. La masa total de todos los asteroides del sistema solar es mucho menor que la masa de la Luna. Los cuerpos más grandes son más o menos esféricos, pero los que tienen diámetros menores de 160 kilómetros suelen presentar formas alargadas e irregulares. La mayoría de los asteroides, sin tener en cuenta su tamaño, tardan de 5 a 20 horas en completar un giro sobre su eje. Algunos asteroides tienen compañeros.
composición de los asteroides
Los asteroides están constituidos por el material que sobró durante la formación del sistema solar. Una teoría sugiere que son los restos de un planeta que fue destruido por una gran colisión hace mucho tiempo. Es más probable, sin embargo, que los asteroides sean el material que no llegó nunca a aglutinarse para formar un planeta. De hecho, si se estima la masa total de todos los asteroides y se concentra en un solo objeto, este tendría menos de 1.500 kilómetros de diámetro (menos de la mitad del diámetro de la Luna).
Las tres cuartas partes de los asteroides visibles desde la Tierra, incluido Ceres (Subido a la categoría de planeta enano), pertenecen al tipo C, lo cual parece estar relacionado con una clase de meteoritos conocidos como condritos carbonáceos. Se considera que son los materiales más antiguos del sistema solar, con una composición que refleja la de las primitivas nebulosas solares. De color muy oscuro, probablemente causado por su contenido en hidrocarburos, presentan pruebas de haber adsorbido agua de hidratación. Así pues, a diferencia de la Tierra y de la Luna, nunca se han reblandecido o recalentado desde que se formaron.
Los asteroides
Los asteroides son objetos rocosos y habitualmente metálicos que orbitan alrededor del Sol pero que son demasiado pequeños para ser considerados como planetas o planetas enanos. Se conocían anteriormente como "planetas menores", y giran en órbitas elípticas, sobre todo entre las órbitas de Martey Júpiter. El tamaño de los asteroides varía desde el de Ceres (que actualmente es un planeta enano), que tiene un diámetro de unos 1000 kilómetros, hasta el tamaño de un guijarro. Dieciséis asteroides tienen un diámetro igual o superior a 240 kilómetros. Se han encontrando desde el interior de la órbita de la Tierra hasta más allá de la órbita de Saturno. La mayoría, sin embargo, están contenidos dentro del cinturón principal que existe entre las órbitas de Marte y Júpiter, llamado "Cinturón de asteroides. Algunos tienen órbitas que atraviesan la trayectoria de la Tierra e incluso algunos han chocado con nuestro planeta en tiempos pasados. Uno de los ejemplos mejor conservados es el Cráter Barringer cerca de Winslow, Arizona.
Descubrimiento de los agujeros negros
En 1994, el telescopio espacial Hubble proporcionó sólidas pruebas de que existe un agujero negro en el centro de la galaxia M87. La alta aceleración de gases en esta región indica que debe haber un objeto o un grupo de objetos de 2,5 a 3.500 millones de masas solares.
El físico inglés Stephen Hawking ha sugerido que muchos agujeros negros pueden haberse formado al comienzo del Universo. Si esto es así, muchos de estos agujeros negros podrían estar demasiado lejos de otra materia para formar discos de acreción detectables, e incluso podrían componer una fracción significativa de la masa total del Universo. En reacción al concepto de singularidad, Hawking ha sugerido que los agujeros negros no se colapsan de esa forma, sino que forman "agujeros de gusano" que comunican con otros universos diferentes al nuestro.
Un agujero negro de masa suficientemente pequeña puede capturar un miembro de un par electrón-positrón cerca del horizonte de sucesos, dejando escapar al otro. Esta partícula sustrae energía del agujero negro, provocando la evaporación de éste. Cualquier agujero negro formado en los comienzos del Universo, con una masa menor de unos pocos miles de millones de toneladas ya se habría evaporado, pero los de mayor masa pueden permanecer.
En enero de 1997, un equipo de astrofísicos estadounidenses presentó nuevos datos sobre los agujeros negros. Sus investigaciones se extendieron a nueve sistemas binarios de estrellas, emisores de rayos X (binarias de rayos X). En cinco de los nueve casos, cuando el material de la estrella de menor masa golpea la superficie del otro objeto, éste emite una radiación brillante en su superficie; se trata de una estrella de neutrones. En las otras cuatro binarias, de las que se creía que contenían agujeros negros, la radiación emitida por el segundo objeto es mínima: la energía desaparecería a través del horizonte de sucesos. Estos datos constituyen el conjunto de pruebas más directo (aunque no definitivo) de la existencia de agujeros negros. El mismo equipo de investigadores informó también del descubrimiento de tres nuevos candidatos a agujeros negros localizados en los centros de las galaxias NGC 3379 (también conocida como M105), NGC 3377 y NGC 4486B.
En junio de 2004: En una galaxia distante a 12.700 millones de años luz se descubrió un agujero negro supermasivo en el centro de dicha galaxia, el objeto se denominó "Q0906+6930 es 16 mil millones de veces más masivo que nuestro sol y tiene una masa del 3% de nuestra vía Láctea, realmente una cifra impresionante". Técnicamente a este tipo de agujero super-masivo se lo denomina "Blazar"
Tipos de agujeros negros
EXISTEN TRES TIPOS DE AGUJEROS NEGROS: El Agujero Negro de masa estelar, los Microagujeros Negros (también llamados Agujeros negros Primordiales) y los agujeros negros Supermasivos.
Cuando una estrella tiene un tamaño en más de dos veces y media que nuestro sol, al final de su vida termina en un Agujero Negro de masa estelar.
Los Agujeros negros Primordiales: son miniagujeros negros que se sospecha viajan a velocidades extremas y su vida es muy corta evaporándose rápidamente, en teoría en los aceleradores de partículas que hay en la tierra se forman estos Microagujeros Negros. No se descarta en el futuro realizar experimentos en La Tierra para detectar estos agujeros negros primordiales.
Creación de un agujero negro
Pueden formarse durante el transcurso de la evolución estelar. Cuando el combustible nuclear se agota en el núcleo de una estrella (Que sea casi 3 veces más grande que nuestros sol), la presión asociada con el calor que produce ya no es suficiente para impedir la contracción del núcleo debida a su propia gravedad. En esta fase de contracción adquieren importancia dos nuevos tipos de presión. A densidades mayores de un millón de veces la del agua, aparece una presión debida a la alta densidad de electrones, que detiene la contracción en una enana blanca. Esto sucede para núcleos con masa inferior a 1,4 masas solares. Si la masa del núcleo es mayor que esta cantidad, esa presión es incapaz de detener la contracción, que continúa hasta alcanzar una densidad de mil billones de veces la del agua. Entonces, otro nuevo tipo de presión debida a la alta densidad de neutrones detendría la contracción en una estrella de neutrones. Sin embargo, si la masa del núcleo sobrepasa las 2,7 masas solares, ninguno de estos dos tipos de presión es suficiente para evitar que se hunda hacia un agujero negro. Una vez que un cuerpo se ha contraído dentro de su radio de Schwartschild, teóricamente se hundirá o colapsará en una singularidad, esto es,en un objeto sin dimensiones, de densidad infinita.
Propiededes de un agujero negro
El concepto de agujero negro lo desarrolló el astrónomo alemán Karl Schwarzschild en 1916 sobre la base de la teoría de la relatividad de Albert Einstein. El radio del horizonte de sucesos de un agujero negro de schwarzschild solamente depende de la masa del cuerpo: en kilómetros es 2,95 veces la masa del cuerpo en masas solares, es decir, la masa del cuerpo dividida por la masa del Sol. Si un cuerpo está eléctricamente cargado o está girando, los resultados de Schwarzschild se modifican. En la parte exterior del horizonte se forma una "ergosfera", dentro de la cual la materia se ve obligada a girar con el agujero negro. En principio, la energía sólo puede ser emitida por la ergosfera.
Agujeros negros
Para entender lo que es un agujero negro empecemos por una estrella como el Sol. El Sol tiene un diámetro de 1.390.000 kilómetros y una masa 330.000 veces superior a la de la Tierra. Teniendo en cuenta esa masa y la distancia de la superficie al centro se demuestra que cualquier objeto colocado sobre la superficie del Sol estaría sometido a una atracción gravitatoria 28 veces superior a la gravedad terrestre en la superficie.Los agujeros negros son cuerpos celestes con un campo gravitatorio tan fuerte que ni siquiera la radiación electromagnética (La luz) puede escapar de su proximidad cayendo inexorablemente en el agujero.
El cuerpo está rodeado por una frontera esférica, llamada "horizonte de sucesos", a través de la cual la luz puede entrar, pero no puede salir, por lo que parece ser completamente negro.
Se llama Horizonte de sucesos ya que el único suceso que puede ocurrir una vez pasada la frontera es el de seguir cayendo en el agujero, ya que no hay velocidad posible suficientemente grande como para escapar de la atracción gravitatoria, ni siquiera a la velocidad de la luz se puede escapar (Aproximadamente 300.000 kilómetros por segundo)
Se llama Horizonte de sucesos ya que el único suceso que puede ocurrir una vez pasada la frontera es el de seguir cayendo en el agujero, ya que no hay velocidad posible suficientemente grande como para escapar de la atracción gravitatoria, ni siquiera a la velocidad de la luz se puede escapar (Aproximadamente 300.000 kilómetros por segundo)
Un campo de estas características puede corresponder a un cuerpo de alta densidad con una masa relativamente pequeña, como la del Sol o inferior, que está condensada en un volumen mucho menor, o a un cuerpo de baja densidad con una masa muy grande, como una colección de millones de estrellas en el centro de una galaxia.
rotación de pluton
El período de rotación de Plutón es de 6.387 días, igual que el de su satélite Caronte. Aunque es común que un satélite viaje alrededor de su primario siguiendo una órbita sincrónica, Plutón es el único planetoide que rota síncronamente con la órbita de su satélite. Debido a este anclaje mareal, Plutón y Caronte siempre presentan la misma cara uno a otro durante su viaje a través del espacio.
Al contrario que la mayoría de los planetas, pero igual que Urano, Plutón rota con los polos casi en su plano orbital. El eje rotacional de Plutón está inclinado 122 grados. Cuando Plutón fue descubierto por primera vez, su relativamente brillante polo sur fue lo primero que se vio desde la Tierra. Plutón parecía apagarse a medida que nuestro punto de vista cambiaba desde la vista polar en 1954 hasta una vista ecuatorial en 1973. El ecuador de Plutón es lo que se puede ver ahora desde la Tierra.
Durante el período entre 1985 y 1990, la Tierra estaba alineada con la órbita de Caronte alrededor de Plutón de tal forma que se podía observar un eclipse cada uno de los días de Plutón. Esto permitió recoger datos significativos que condujeron a la construcción de mapas de albedo que definen la reflectividad de la superficie, así como la primera determinación precisa de los tamaños de Plutón y Caronte, incluyendo todos los números que se pueden calcular a partir de estos.
Los primeros eclipses (eventos mutuos) comenzaron bloquenado la región polar norte. Los eclipses posteriores bloquearon la región ecuatorial y los eclipses finales bloquearon la región polar sur. Mediante una medida cuidadosa en el tiempo del brillo, fue posible determinar algunas características de la superficie. Se comprobó que Plutón tiene un polo sur altamente reflectivo, un casquete polar más tenue en el norte, y zonas brillantes y oscuras en la región ecuatorial. El albedo geométrico de Plutón varía entre 0,49 y 0,66, que es mucho más brillantes que Caronte, cuyo albedo varía entre 0,36 y 0,39.
Atmósfera de pluton
Se descubrió también que Plutón tiene una atmósfera tenue que contiene un 98% de nitrógeno (N2), metano (CH4) y también están presentes trazas de monóxido de carbono (CO) que ejerce una presión sobre la superficie del planeta aproximadamente 100.000 veces más débil que la presión atmosférica de la Tierra al nivel del mar.
La presencia de metano sólido indica que la temperatura de Plutón es inferior a los 70 grados Kelvin. La temperatura varía enormemente durante el transcurso de su órbita ya que Plutón puede acercarse al Sol hasta las 30 UA y alejarse hasta las 50 UA (UA=Unidades Astronómicas). Existe una fina atmósfera que se congela y cae sobre la superficie del planeta a medida que este se aleja del Sol.
La densidad media de Plutón varía entre 1,8 y 2,1 gramos por centímetro cúbico, Plutón es, aparentemente, más rocoso que los otros planetas de la parte exterior del sistema solar (se ha llegado a la conclusión que Plutón es entre un 50% y 75% rocas mezcladas con hielo). Esto puede ser el resultado del tipo de combinaciones químicas a baja temperatura y baja presión que tuvieron lugar durante la formación del planeta. Algunos astrónomos han sugerido que Plutón puede ser un antiguo satélite de Neptuno, violentamente lanzado a una órbita diferente durante los primeros días del sistema solar. Caronte sería entonces una acumulación de los materiales más ligeros resultantes de la colisión. Pero, sabiendo que la densidad de Caronte varía entre 1,2 y 1,3 g/cm3, nos indica que contiene pocas rocas. Entonces la diferencia de densidad entre el planeta y su satélite nos dice que Plutón y Caronte se crearon de forma independiente; aunque los datos de Caronte obtenidos a partir de las imágenes del Hubble se están contrastando con los derivados de las observaciones terrestres. Es el día de hoy que no se sabe el origen cierto de Plutón y Caront.e.
Pluton
Es el planeta más pequeño (ahora, ex-planeta o planeta enano) y el que se aleja más del Sol. Se descubrió en 1930, pero está tan lejos que, de momento, tenemos poca información.
Generalmente, Plutón es el planeta más lejano. Pero su órbita es muy excéntrica y, durante 20 de los 249 años que tarda en hacerla, está más cerca del Sol que Neptuno.
La órbita de Plutón también es la más inclinada, 17º. Por eso no hay peligro de que se encuentre con Neptuno. Cuando las órbitas se cruzan lo hacen cerca de los extremos. En vertical, les separa una distancia enorme.
tritón el satelite brillante de neptuno
Dos características lo hacen especial: es el único satélite grande que gira en dirección contraria a la rotación de su planeta y es el objecto del Sistema Solar donde se ha medido la temperatura media más fría, 235 ºC bajo cero.
Su órbita está inclinada unos 30º con respecto al plano de la órbita de Neptuno alrededor del Sol. Se cree que se compone aproximadamente en una cuarta parte por hielo y en tres cuartas partes por roca.
Cuando fue capturado por la gravedad de Neptuno y forzado a describir una órbita elíptica en torno al planeta, Tritón rotaba sobre su eje a mucha más velocidad de lo que lo hace actualmente. Durante unos mil millones de años, la gravedad de Neptuno frenó la rotación de Tritón y lo llevó a describir una órbita circular.
Su superficie tiene pocos cráteres, pero abundantes grietas. También presenta llanuras heladas y accidentes geográficos semejantes a volcanes con diámetros de hasta 200 km. Hay géiseres que arrojan chorros oscuros a la tenue atmósfera. Esto puede deberse a que la luz del Sol vaporiza nitrógeno líquido situado bajo la superficie.
satélites de neptuno
Desde Neptuno, el Sol está muy lejos, 30 veces más que la Tierra, y sólo parece un puntito muy brillante. Todos los demás planetas están entre él y el Sol, a distancias enormes, de manera que no se ven.
Pero Neptuno guardaba una sorpresa. El 10 de octubre de 1846, menos de tres semanas después del descubrimiento de Neptuno, el astrónomo William Lassell descubrió que tenía un satélite, y brillaba más que los dos satélites de Urano conocidos hasta entonces.
Hasta agosto de 2004 se habían descubierto un total de 13 satélites de Neptuno.
anillos de neptuno
Neptuno posee un conjunto de cinco anillos estrechos y muy tenues. Los anillos están compuestos por partículas de polvo, que podrían originarse en los choques de pequeños meteoritos con las lunas de Neptuno. Desde los telescopios situados en la superficie terrestre los anillos aparecen como arcos pero desde el Voyager 2 los arcos se convierten en manchas brillantes o racimos de manchas en el sistema de anillos. La causa exacta de estos brillantes racimos es desconocida.
campo magnético e neptuno
El campo magnético de Neptuno, como el de Urano, está bastante inclinado, más de 50 grados respecto al eje de rotación y desplazado al menos 0,55 radios (unos 13.500 km) del centro físico. Comparando los campos magnéticos de los planetas, los investigadores piensan que la extrema orientación podría ser característica de los flujos en el interior del planeta y no el resultado de la inclinación del propio planeta o de cualquier posible inversión de los campos en ambos planetas.
características generales de neptuno
Las nubes cubren totalmente la superficie de Neptuno. El interior comienza con una región de gases muy comprimidos. En lo más profundo de su interior, estos gases se mezclan en una capa de líquido que rodea el núcleo central del planeta que es de de roca y hielo. La inclinación de su eje hace que el sol caliente las mitades norte y sur de Neptuno alternativamente, dando lugar a las estaciones y los cambios de temperatura típicos de las estaciones, como ocurre en la Tierra.
Neptuno está rodeado por gruesas capas de nubes que tienen un movimiento muy rápido. Los vientos desplazan estas nubes a velocidades de hasta 1.100 kilómetros por hora. Las nubes más alejadas de la superficie de Neptuno consisten principalmente en metano congelado. Los científicos creen que las nubes oscuras de Neptuno, que se encuentran por debajo de las nubes de metano, están compuestos de sulfuro de hidrógeno.Los vientos más fuertes de cualquier planeta del Sistema Solar son los de Neptuno. Muchos de ellos soplan en sentido contrario al de rotación. Cerca de la Gran Mancha Oscura se han medido vientos de 2.000 Km/h.
Neptuno está rodeado por gruesas capas de nubes que tienen un movimiento muy rápido. Los vientos desplazan estas nubes a velocidades de hasta 1.100 kilómetros por hora. Las nubes más alejadas de la superficie de Neptuno consisten principalmente en metano congelado. Los científicos creen que las nubes oscuras de Neptuno, que se encuentran por debajo de las nubes de metano, están compuestos de sulfuro de hidrógeno.Los vientos más fuertes de cualquier planeta del Sistema Solar son los de Neptuno. Muchos de ellos soplan en sentido contrario al de rotación. Cerca de la Gran Mancha Oscura se han medido vientos de 2.000 Km/h.
superficie de neptuno
Casi nunca es visible a simple vista, aunque se puede observar con un pequeño telescopio, apareciendo como un pequeño disco azul verdoso sin marcas definidas en su superficie. La temperatura de la superficie de Neptuno es de unos -218 ° C, parecida A la de Urano, que está a más de 1.500 kilómetros más cerca del sol, por lo tanto, los científicos suponen que Neptuno debe tener alguna fuente interna de calor. La atmósfera se compone fundamentalmente de hidrógeno y helio, pero la presencia de más del 3% de metano da al planeta su sorprendente color azul.
Los dos tercios interiores de Neptuno están compuestos por una mezcla de roca fundida, agua, amoniaco y metano líquidos. El tercio exterior es una mezcla de gases calientes compuestos por hidrógeno, helio, agua y metano.
Neptuno se compone principalmente de hidrógeno, helio, agua y silicatos. Los silicatos son los minerales que componen la mayor parte de la corteza rocosa de la Tierra, también presentes en Neptuno aunque no tiene una superficie sólida como la Tierra
Neptuno
Es el planeta más exterior de los gigantes gaseosos y el primero que fue descubierto, en septiembre de 1846, gracias a predicciones matemáticas.
El interior de Neptuno es roca fundida con agua, metano y amoníaco líquidos. El exterior es hidrógeno, helio, vapor de agua y metano, que le da el color azul.
Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra.La distancia media de Neptuno al Sol es de 4.500 millones de kilómetros. Cuando está cerca del sol se encuentra a unas 29 Unidades Astronómicas (Perihelio) y Cuando se aleja del sol se encuentra a 30.4 UA.
Su diámetro ecuatorial es de aproximadamente 49.400 kilómetros, o sea, cerca de 3,8 veces el de la Tierra. Su volumen es aproximadamente 72 veces y su masa 17 veces la de la Tierra o 1,7 veces la del agua. Neptuno completa su órbita alrededor del Sol cada 165 años. Un día de Neptuno tiene 16 horas y 6,7 minutos.
Oberón luna de urano
Oberón: Se caracteriza por una superficie helada, cubierta de cráteres, algunos de un tamaño considerable. Tiene reflejos brillantes en algunos lugares, igual que Calisto, la luna de Júpiter.
Su diámetro es de 1.523 Km. y gira alrededor de Urano a una distancia media de 582.600 Km. en 13 días y 11 horas.
La luna de urano titania
satélites de urano
Urano tiene 27 satélites 5 descubiertos por medio del telescopio y 10, por el Voyager 2); todos giran alrededor de su ecuador y se mueven en el mismo sentido en el que gira el planeta. Las dos lunas mayores, Oberon y Titania, las descubrió Herschel en 1787. Las dos siguientes, Umbriel y Ariel, fueron descubiertas por el astrónomo británico William Lassell en 1851. Miranda, el satélite más interior conocido antes del Voyager, fue descubierto en 1948 por el astrónomo estadounidense Gerard Pieter Kuiper.
Todos los nombres de las 27 lunas de Urano son:
MIRANDA - ARIEL - UMBRIEL- TITANIA - OBERON - CORDELIA - OFELIA - BIANCA - CRESIDA - DESDÉMONA - JULIETA - PORCIA - ROSALINDA- CUPIDO - BELINDA- PERDITA - PUCK - MAB - FRANCISCO - CALIBAN- STEFANO - TRINCULO - SICORAX - MARGARI
MIRANDA - ARIEL - UMBRIEL- TITANIA - OBERON - CORDELIA - OFELIA - BIANCA - CRESIDA - DESDÉMONA - JULIETA - PORCIA - ROSALINDA- CUPIDO - BELINDA- PERDITA - PUCK - MAB - FRANCISCO - CALIBAN- STEFANO - TRINCULO - SICORAX - MARGARI
TA - PRÓSPERO - SETEBOS - FERDINANDO
anillos de urano
En 1977, mientras se observaba la ocultación de una estrella detrás del planeta, el astrónomo estadounidense James L. Elliot descubrió la presencia de cinco anillos que rodeaban a Urano en el plano de su ecuador. Los llamó Alpha, Beta, Gamma, Delta y Epsilon (empezando por el anillo más interno). Forman un cinturón de 9.400 kilómetros de ancho, extendiéndose hasta una distancia de 51.300 kilómetros del centro del planeta. En enero de 1986, durante el viaje exploratorio del Voyager 2 se descubrieron cuatro anillos más. Durante las visitas de las naves Voyager, estos anillos fueron fotografiados y medidos. Los anillos de Urano son claramente diferentes de los de Júpiter y Saturno. El más exterior de los anillos, epsilon, está compuesto por rocas de hielo de varios metros de envergadura. También parece existir una tenue distribución de polvo a lo largo del sistema de anillos.
Urano tiene dos juegos de anillos. El sistema interno de nueve anillos, descubierto en 1977, consiste principalmente en anillos estrechos y oscuros. La sondas Voyager encontraron dos anillos internos adicionales. El sistema exterior de los dos anillos, fue descubierto por imágenes capturadas con el Telescopio Espacial Hubble en 2003. En 2006, las observaciones de Hubble combinadas con las observaciones realizadas en el Observatorio Keck mostraron que los anillos exteriores de Urano son de colores muy brillantes.
Urano tiene dos juegos de anillos. El sistema interno de nueve anillos, descubierto en 1977, consiste principalmente en anillos estrechos y oscuros. La sondas Voyager encontraron dos anillos internos adicionales. El sistema exterior de los dos anillos, fue descubierto por imágenes capturadas con el Telescopio Espacial Hubble en 2003. En 2006, las observaciones de Hubble combinadas con las observaciones realizadas en el Observatorio Keck mostraron que los anillos exteriores de Urano son de colores muy brillantes.
Campo magnético y rotación de urano
Los campos magnéticos de Urano
Mientras que los campos magnéticos están usualmente en alineación con la rotación de un planeta, el campo magnético de Urano está inclinado. El eje magnético del planeta Urano, está inclinado casi 60 grados con respecto de rotación eje del planeta, y también tiene un desplazamiento desde el centro del planeta, en un tercio de radio del planeta. Los campos magnéticos de Urano y Neptuno son muy irregulares.
La rotación del planeta Urano.
Al igual que el planeta Venus, Urano gira de este a oeste. El eje de rotación de Urano, está inclinado casi en paralelo a su plano orbital, por lo que el planeta Urano parece estar girando sobre el mismo lado. Esta situación puede ser el resultado de una colisión con un cuerpo de tamaño planetario en la historia temprana del planeta, que al parecer cambió radicalmente la rotación de Urano. Debido a la orientación inusual de Urano, el planeta experimenta variaciones extremas en la luz del sol durante cada año del planeta Urano.
Atmósfera de urano
La atmósfera de Urano está formada por hidrógeno, metano y otros hidrocarburos. El metano absorbe la luz roja, por eso refleja los tonos azules y verdes.
Urano es uno de los dos planetas gigantes helados del sistema solar exterior (el otro es Neptuno). La atmósfera de Urano está compuesta principalmente de hidrógeno y helio, con una pequeña cantidad de metano y trazas de agua y amoníaco. El planeta Urano obtiene su color verde-azulado a partir del gas metano presente en la atmósfera. La luz solar atraviesa la atmósfera y es reflejada por encima de las nubes de Urano. El gas metano absorbe la porción roja de la luz, resultando en un color verde-azulado. La mayor parte (80 por ciento o más) de la masa de Urano, se encuentra en un núcleo líquido que consta principalmente de materiales de hielo (agua, metano y amoníaco).
Durante casi una cuarta parte del año de Urano, el Sol brilla directamente sobre cada polo, sumiendo a la otra mitad del planeta en un invierno largo y oscuro.
Urano es uno de los dos planetas gigantes helados del sistema solar exterior (el otro es Neptuno). La atmósfera de Urano está compuesta principalmente de hidrógeno y helio, con una pequeña cantidad de metano y trazas de agua y amoníaco. El planeta Urano obtiene su color verde-azulado a partir del gas metano presente en la atmósfera. La luz solar atraviesa la atmósfera y es reflejada por encima de las nubes de Urano. El gas metano absorbe la porción roja de la luz, resultando en un color verde-azulado. La mayor parte (80 por ciento o más) de la masa de Urano, se encuentra en un núcleo líquido que consta principalmente de materiales de hielo (agua, metano y amoníaco).
Durante casi una cuarta parte del año de Urano, el Sol brilla directamente sobre cada polo, sumiendo a la otra mitad del planeta en un invierno largo y oscuro.
Urano
Es el septimo planeta desde el Sol y el tercero más grande del Sistema Solar. Urano es también el primero que se descubrió gracias al telescopio, en 1781.
Urano es el séptimo planeta del Sistema Solar, el tercero en tamaño, y el cuarto más masivo.
Este planeta, de 51.118 km de diámetro, se encuentra a unos 3.000 millones de kilómetros del Sol (20 veces más lejos que la Tierra) y se llama así en honor al dios griego Urano que era el padre de Crono (el dios Saturno romano).
Urano posee la superficie más uniforme de todos los planetas por su característico color azul-verdoso, producido por la combinación de gases presentes en su atmósfera. Puede ser visto a simple vista en un cielo excepcionalmente oscuro, y puede encontrarse con facilidad con simples binoculares.
Los satélites Dione y Tetis
Iapetus satélite de saturno
Iapetus es uno de los satélites de Saturno más estraños. Tiene una densidad semejante a la de Rea, pero su aspecto es muy diferente, porque tiene una cara oscura y otra clara. La cara oscura es, probablemente, material de un antiguo meteorito. Su diámetro es de 1.435 Km. y gira muy lejos, a 3.561.000 Km. de Saturno en 79 días y un tercio.
La luna Rea de saturno
Rea tiene 1.530 Km. de diámetro y gira a 527.000 Km. de Saturno cada cuatro días y medio. Tiene un pequeño núcleo rocoso. El resto es un océano de agua helada, con temperaturas que van de los 174 a los 220 ºC bajo cero.
Titan satélite de saturno
La luna más grande de Saturno es Titán y supera en tamaño al planeta Mercurio. (Titán es la segunda luna más grande del sistema solar, sólo la luna de Júpiter Ganímedes, es más grande.) Titán está envuelto en una gruesa atmósfera, rica en nitrógeno y que podría ser similar a como era la Tierra hace mucho tiempo, cuando aún se estaba formando. Con el estudio de esta luna, se espera poder revelar mucho sobre la formación planetaria y, tal vez, sobre los primeros días de la Tierra.
Titán es el mayor de los satélites de Saturno y el segundo en tamaño de todo el Sistema Solar, con un diámetro de 5.150 Km.
Titán tiene una atmósfera más densa que la de La Tierra, formada por nitrógeno e hidrocarburos que le dan un color naranja. Gira alrededor de Saturno a 1.222.000 Km., en poco menos de 16 días.
Satélites de saturno
Saturno tiene oficialmente 18 satélites reconocidos y nombrados, el mayor número de satélites en el sistema solar. Además, existen otros satélites sin confirmar. Uno cercano a la órbita de Dione, otro está situado entre Dione y Rea. Estos satélites sin confirmar fueron encontrados en las fotografías realizadas por el Voyager, pero no pudieron confirmarse con otro avistamiento. En 1995, el Telescopio Espacial Hubble tomó imágenes de cuatro objetos que podrían ser nuevas Lunas.
Sus diámetros van de 20 a 5.150 km. Constan, fundamentalmente, de las sustancias heladas más ligeras que predominaron en las partes externas de la nebulosa de gas y polvo de la que se formó el sistema solar. Los cinco mayores satélites interiores (Mimas, Encélado, Tetis, Dione y Rea) son más o menos de forma esférica y compuestos en su mayor parte de hielo de agua. El material rocoso puede constituir hasta un 40% de la masa de Dione. Las superficies de los cinco presentan cráteres producidos por impactos de meteoritos. Encélado tiene una superficie más lisa que los otros y la zona que presenta menos cráteres en su superficie tiene algunos cientos de millones de años. Los astrónomos suponen que Encélado suministra partículas al anillo E, el cual está muy cerca de la órbita del satélite. Mimas, con una superficie nada lisa, muestra un cráter cuyo diámetro es igual a la tercera parte del diámetro del propio satélite. Tetis tiene también un gran cráter y un valle de 100 km de ancho que se extiende más de 2.000 km a través de su superficie. Tanto Dione como Rea tienen pequeñas bandas brillantes en sus superficies ya muy reflectivas. Algunos científicos suponen que fueron causadas por hielos expulsados de cráteres por impactos meteóricos, o por hielo puro procedente del interior.
Se han descubierto diversos satélites pequeños fuera del anillo A y cerca de los anillos F y G. Así mismo, se han descubierto cuatro satélites de Tetis, llamados Troyanos, y uno de Dione. El término Troyano se aplica a cuerpos como los satélites o asteroides que se producen en regiones de estabilidad que preceden o siguen a un cuerpo en su órbita alrededor de un planeta o del Sol.
Suscribirse a:
Entradas (Atom)